Discrete Concavity for Potential Games
نویسنده
چکیده
This paper proposes a discrete analogue of concavity appropriate for potential games with discrete strategy sets. It guarantees that every Nash equilibrium maximizes a potential function. JEL classification: C72.
منابع مشابه
Dominating set games
In this paper we study cooperative cost games arising from domination problems on graphs. We introduce three games to model the cost allocation problem and we derive a necessary and sufficient condition for the balancedness of all three games. Furthermore we study concavity of these games.
متن کاملAggregative Games and Best-Reply Potentials
This paper introduces quasi-aggregative games and establishes conditions under which such games admit a best-reply potential. This implies existence of a pure strategy Nash equilibrium without any convexity or quasi-concavity assumptions. It also implies convergence of best-reply dynamics under some additional assumptions. Most of the existing literature’s aggregation concepts are special cases...
متن کاملExistence of Equilibria in Games with Arbitrary Strategy Spaces and Preferences∗
This paper considers the existence of Nash equilibria in games with any number of players that may be finite, infinite, or even uncountable; arbitrary strategy spaces that may be discrete, continuum, non-compact or non-convex; payoffs (resp. preferences) that may be discontinuous or do not have any form of quasi-concavity (resp. nontotal, nontransitive, discontinuous, nonconvex, or nonmonotonic...
متن کاملExploiting Concavity in Bimatrix Games: New Polynomially Tractable Subclasses
We study the fundamental problem of computing an arbitrary Nash equilibrium in bimatrix games. We start by proposing a novel characterization of the set of Nash equilibria, via a bijective map to the solution set of a (parameterized) quadratic program, whose feasible space is the (highly structured) set of correlated equilibria. We then proceed by proposing new subclasses of bimatrix games for ...
متن کاملStrong log-concavity is preserved by convolution
We review and formulate results concerning strong-log-concavity in both discrete and continuous settings. Although four different proofs of preservation of strong log-concavity are known in the discrete setting (where strong log-concavity is known as “ultra-log-concavity”), preservation of strong log-concavity under convolution has apparently not been investigated previously in the continuous c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IGTR
دوره 10 شماره
صفحات -
تاریخ انتشار 2008